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A general n-state directed “sandpile” model is introduced. The stationary properties of the n-state model are
derived for n��, and analytical arguments based on a central limit theorem show that the model belongs to the
universality class of the totally asymmetric Oslo model, with a crossover to uncorrelated branching process
behavior for small system sizes. Hence, the central limit theorem allows us to identify the existence of a large
universality class of one-dimensional directed sandpile models.
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Sandpile models have attracted much analytical attention
in recent years, largely due to their application to the devel-
opment of self-organized criticality �SOC� �1–4�. Analytical
solutions, scaling arguments and numerics have shown that
many models share the same critical exponents and scaling
functions, leading to the notion of universality classes for
such systems, as in equilibrium systems �2,5,6�. In the fol-
lowing, we map an n-state directed model to a random
walker problem and, using a central limit theorem for depen-
dent random variables �7�, derive the conditions for scaling
and the associated critical exponents. The exponents are in
exact agreement with those derived for the Totally Asymmet-
ric Oslo Model �TAOM� �8,9�, which is a special case of this
general model. For small system sizes, we find that the
model may exhibit different scaling, which corresponds to an
uncorrelated branching process, with a crossover character-
ized by an n dependent crossover length, �n.

The model considered is an n-state directed “sandpile”
model. The system exists on a one-dimensional lattice with L
sites. Each site, i, is in one of n states, zi� �0,n−1�, which
represents the number of particles on site i.

At the beginning of each time step, we add one particle to
site i=1. This site may then topple a number of times, each
toppling redistributing a particle to the next site, z1→z1−1
and z2→z2+1. When site i=2 receives a particle it may also
undergo topplings, redistributing particles to site i=3, and so
on, with particles being passed to sites of increasing i. Note
that when site i=L topples, the redistributed particle will
leave the system. When all activity ceases, a new time step
commences. The avalanche size, s, is defined as the total
number of topplings during a single time step. The only re-
strictions on the toppling rules are: �i� A toppling may never
cause zi to become negative—we cannot have a negative
number of particles. �ii� If zi�n−1, then site i must topple.
�iii� Each time site i topples, it redistributes one particle to
site i+1 only—this is the directed nature. �iv� Particles are
conserved in the bulk, only leaving the system at the bound-
ary site i=L and entering when particles are added to the
boundary site i=1 at the beginning of each time step. �v� The
number of topplings a site undergoes is nondeterministic for

at least one value of z. This final restriction disallows deter-
ministic toppling rules, which lead to trivial dynamics, and
can be thought of as arising from some inherent randomness
in the packings of the particles, such as in �10�.

For the following general discussion, there is no need to
specify the toppling rules in any more detail. Later, when
presenting numerical results, we will consider a specific
implementation of a general class of probabilistic toppling
rules that satisfies the restrictions �i�–�v� above.

The quantity of interest in a sandpile which has reached a
nonequilibrium steady state is the avalanche-size probability,
P�s ;L ,1�, which is the probability of observing an avalanche
of size s in a system of size L when one particle is added to
site i=1. SOC is associated with a time-independent
avalanche-size probability which obeys simple finite-size
scaling

P�s;L,1� = as−�G�s/bLD� for s,L � 1, �1�

where a and b are nonuniversal constants, � and D are uni-
versal critical exponents, and G is a universal scaling func-
tion. The kth moment of the avalanche-size probability is

QL,1
�k� = �

s=1

�

skP�s;L,1� � �
1

�

ask−�G�s/bLD� ds

= ab1+k−�Gk�L�LD�1+k−��, �2�

where the sum has been approximated by an integral and
Gk�L�=�1/bLD

� uk−�G�u� du. Provided that 0�Gk�����, we
have

QL,1
�k� = �kL

	k for L � 1, �3�

where 	k=D�1+k−�� is a universal exponent and �k

=ab1+k−�Gk�L� is a nonuniversal amplitude which is a con-
stant for L�1. Hence, the scaling of the moments with sys-
tem size L is a universal feature which is independent of
particular details of the dynamics if Eq. �1� is valid, the ap-
proximation to the integral in Eq. �2� does not affect the
scaling behavior of QL,1

�k� , and Gk�L� approaches a nonzero
constant for L→�. In the following we shall show that under
a precise set of conditions, Eq. �3� will hold with D=3/2 and
�=4/3.
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Using a simple extension to the Markov matrix methods
used in Ref. �9�, it can be shown that if the Markov matrix
representing the evolution operator for the model is regular
and n��, then there is a unique stationary state. Note that
we will only consider toppling rules for which the evolution
operator is regular and so a unique stationary state exists.
Following a similar calculation as in �9�, we find that in this
state, the number of particles, zi, in each site, i, is an inde-
pendent identically distributed random variable with prob-
ability pz �11�. Hence, we find that the probability of occur-
rence of a configuration 	zi
= 	z1 ,z2 , . . . ,zL
 is

p	zi

= �

i=1

L

pzi
, �4�

where the values of pz depend on the details of the toppling
rules. This is known as a product state and has the property
that there are no spatial correlations. However, we shall
shortly argue that there exists a crossover length, �n, such
that for system sizes L��n, there are temporal correlations
which produce nontrivial behavior.

We define

QL,m
�k� � �

s=1

�

skP�s;L,m� �5�

as the kth moment of the avalanche-size probability,
P�s ;L ,m�, for a system of size L which has received m par-
ticles at site i=1.

The first moment is easily derived from the fact that, in
the stationary state, the average number of particles which
leave the system through the open boundary must equal the
number of particles added to the system. Each of the m par-
ticles topples exactly L times, and

QL,m
�1� = mL , �6�

implying 	1�D�2−��=1.
To derive the scaling of higher moments, we introduce

P�t ,s ;1 ,L ,m� as the joint probability that a system of size
1+L which has received m particles at site i=1 undergoes t
topplings in the first site and s in the remaining L sites. We
note that since the model is directed and the stationary state
is a product state,

P�t,s;1,L,m� = P�t;1,m�P�s;L,t� . �7�

At the beginning of each time step we add one particle to
site i=1 and it will topple s1 times with probability
P�s1 ;1 ,1�. The second site therefore receives s1 particles and
as a result topples s2 times with probability P�s2 ;1 ,s1�. The
probability of site 2 toppling s2 times, denoted 
2�s2�, is


2�s2� = �
s1=1

�

P�s2;1,s1�P�s1;1,1� �8�

which follows from Eq. �7�. If we define 
i�x� as the prob-
ability that site i topples x times, with 
1�s1�� P�s1 ;1 ,1�,
then


i+1�x� = �
y=1

�

P�x;1,y�
i�y� . �9�

This describes a discrete random walker on the interval
�0,��. Since activity stops when one of the sites topples zero
times, there is an absorbing boundary at x=0 such that if x
=0 at some time then x=0 for all later times �see Fig. 1�. The
probability of hopping from y to x in a single step is given by
P�x ;1 ,y�. If we denote a particular trajectory of a walker
x�i�, i=0, . . . ,L, then the corresponding avalanche size is

s = �
i=1

L

x�i� �10�

with x�0�=1. This corresponds to the area under the first L
steps of a random walk with an absorbing boundary at x=0.

Of course, this is a correlated random walker and indi-
vidual steps are not independent because the probability of
hopping a certain distance varies depending on where the
random walker is according to P�s ;1 ,m�.

We now define

Q̃1,m
�2� = �

s=0

�

�s − m�2P�s;1,m� , �11�

which is the width of the probability P�s ;1 ,m� around the
mean value, m. Using a martingale theorem �7�, we can show

that if there exists a number 0�M �� such that 0� Q̃1,m
�2�

�M for all m, then in the limit L→�, the distribution 
i�x�
will converge for large i to that for an equivalent independent
random walker �11�. Hence, we simply borrow the result for
Brownian motion to find that all moments scale,

QL,1
�k� � L�3k−1�/2 = L�3/2��1+k−4/3� �12�

and we can read off the exponents D=3/2 and �=4/3.
In order to satisfy the requirements of the theorem in �7�,

we must find the conditions under which Q̃1,m
�2� is nonzero and

finite. Note, again, that we are assuming the existence of a
unique stationary state. Consider a site with z particles which
has received m particles. After s topplings have taken place it

FIG. 1. Area under the random walk with an absorbing bound-
ary at x=0. The solid and dashed lines are two different trajectories
where the former has been absorbed at the boundary at the point i*

on the i axis where x�i*�=0. The second walker survives until L.
The area under the curve for the first walker is shaded dark gray and
the area for the second walker is that of the first plus the light gray
region.
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will contain z�=z+m−s particles. Since both z and z� must
lie between 0 and n−1, P�s ;1 ,m� may only be non-zero for

m−n+1�s�m+n−1. Hence Q̃1,m
�2� � �n−1�2, which is finite

for n��. In order to have Q̃1,m
�2� =0, there must be an m for

which only an avalanche of size s=m is allowed. However,
this is only possible if the number of topplings a site under-
goes on receiving a particle is fully deterministic, which are
trivial dynamics. Hence, if n�� and the toppling rule leads

to nontrivial dynamics we have 0� Q̃1,m
�2� � �n−1�2 and Eq.

�12� follows.
The scaling of the TAOM will only be observed asymp-

totically for L→�. However, we hypothesize the existence
of an n dependent crossover length, �n, such that TAOM
scaling is observed for L��n, with different behavior for L
�n. To see what happens for system sizes L�n, consider a
system when a particle is added to site i=1. If the probabil-
ity, pz, that a site is occupied by z particles has support for all
z� �0,n−1�, then, for n�1, it is likely that 0zn−1. If
the number of particles on a site z is neither close to 0 nor
n−1, the propagating avalanches will not be sensitive to the
medium within which it is propagating and the system will
be temporally uncorrelated. However, as the avalanche
propagates through the system, fluctuations in the number of
topplings increase and as each subsequent site is less likely
to have uncorrelated topplings they will start to feel the fact
that n is finite. Hence, for small system sizes, 1L�n, the
avalanches are uncorrelated and will correspond to an uncor-
related branching process with exponents D=2 and �=3/2
�12�. For large system sizes, L��n, temporal correlations
will emerge and the system will crossover to behavior of the
TAOM with D=3/2 and �=4/3.

We support the above arguments with numerical data
from the following “typical” realization: A site i, 0�zi�n
−1, which receives a particle will topple once with probabil-
ity 1 /2 and twice with probability 1 /4. If zi=0, then it can-
not topple twice and will topple once with probability 1 /2. If
zi=n−1, it will topple once or twice, each with probability
1 /2. It can be shown that the support of pz extends over all
possible states z� �0,n−1�. We shall compare numerical re-
sults from this model with exact results from the correspond-
ing uncorrelated branching process, which we can calculate
analytically �12�.

Figure 2�a� displays measurements of the rescaled second
moment, QL,1

�2� /L5/2 vs L. From the arguments above, we ex-
pect QL,1

�2� /L5/2 to scale like L1/2 for 1L�n and approach a
constant for L��n, which is supported by the numerics. We
do not attempt a data collapse because, although it is clear
that the crossover length �n is a nondecreasing function of n,
it has a nonuniversal functional dependence.

We also consider the moment ratios

gk �
sk�s�k−2

s2�k−1 �
�k�1

k−2

�2
k−1 . �13�

For an avalanche-size probability of the form Eq. �1�, gk
will be universal constants, that is, they only depend on �
and G. Figure 2�b� displays g3 vs system size, L. Since Gk�L�
is only constant for L�1, the measured g3 will only con-

verge toward the universal constant for large L. These have
values g3=9/5 for the branching process and we measure
g3�1.29 for the TAOM. For 1L�n, the measured values
follow the exact result for the uncorrelated branching pro-
cess, with a crossover to the TAOM curve for L��n.

We have shown that a general n-state directed sandpile
model of self-organized criticality belongs to the same uni-
versality class as the totally asymmetric Oslo model, recently
solved in Ref. �9�. The precise conditions for this universal-
ity are that the evolution operator is regular, the avalanches
are nondeterministic, and that n is finite. We have argued that
there is an n dependent crossover length �n, which separates
uncorrelated branching process exponents, D=2 and �=3/2,
for 1L�n from TAOM exponents, D=3/2 and �=4/3
for L��n. This crossover may be considered a consequence
of temporal correlations emerging in the system, which

FIG. 2. Numerical results for a typical realization with n
=2,4 ,8 ,64 and exact results for the uncorrelated branching process
�BP�. The errors for both graphs were calculated using Efron’s Jack-
knife �13� and are smaller than the symbols. �a� The rescaled second
moment, QL,1

�2� /L5/2 vs system size, L. For n=2,4 ,8 ,64, the rescaled
second moment approached a constant for L�1, while for the
branching process it increases like L1/2. �b� The moment ratio, g3,
vs system size, L. For n=2,4 ,8 ,64, the moment ratios follow the
branching process curve for L�n before approaching the TAOM
value of g3�1.29 for L��n.
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moves it away from the uncorrelated branching process,
associated with mean-field exponents. The conditions for
a system to be in this universality class have been found
using a central limit theorem for dependent random variables
�7�.
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